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Problem 1.10

Perpendicular unit vectors*
Given vector A = 3i + 4j — 4k,

(a) find a unit vector B that lies in the x—y plane and is perpendicular to A.
(b) find a unit vector C that is perpendicular to both A and B.

(c) Show that A is perpendicular to the plane defined by B and C.

Solution
Part (a)

Taking the cross product of A and a unit vector in the z direction will give us another vector that
is perpendicular to both of them. That is, there will be no component in the z direction.
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The unit vector B is obtained by dividing this vector by its magnitude.
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Part (b)

Taking the cross product of A and B will give us a vector perpendicular to both of them.
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The unit vector € is obtained by dividing this vector by its magnitude.
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Part (c)

We can show that A is perpendicular to the plane by showing it is parallel to the vector normal
to the plane that we obtain by taking the cross product.
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A is a vector in the same direction as B x C. The only difference between them is that the

magnitude of A is v/41 times larger than that of B x C. Because B x € is normal to the plane by
virtue of the cross product, A is as well.
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