Problem 1.10

Perpendicular unit vectors*
Given vector $\mathbf{A}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$,
(a) find a unit vector \mathbf{B} that lies in the $x-y$ plane and is perpendicular to \mathbf{A}.
(b) find a unit vector $\hat{\mathbf{C}}$ that is perpendicular to both \mathbf{A} and \mathbf{B}.
(c) Show that \mathbf{A} is perpendicular to the plane defined by $\hat{\mathbf{B}}$ and $\hat{\mathbf{C}}$.

Solution

Part (a)
Taking the cross product of \mathbf{A} and a unit vector in the z direction will give us another vector that is perpendicular to both of them. That is, there will be no component in the z direction.

$$
\mathbf{A} \times \hat{\mathbf{k}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & 4 & -4 \\
0 & 0 & 1
\end{array}\right|=4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}
$$

The unit vector $\hat{\mathbf{B}}$ is obtained by dividing this vector by its magnitude.

$$
\hat{\mathbf{B}}=\frac{4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}}{\sqrt{4^{2}+(-3)^{2}}}
$$

Therefore,

$$
\hat{\mathbf{B}}=\frac{1}{5}(4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}) .
$$

Part (b)

Taking the cross product of \mathbf{A} and \mathbf{B} will give us a vector perpendicular to both of them.

$$
\mathbf{A} \times \hat{\mathbf{B}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & 4 & -4 \\
\frac{4}{5} & -\frac{3}{5} & 0
\end{array}\right|=-\frac{12}{5} \hat{\mathbf{i}}-\frac{16}{5} \hat{\mathbf{j}}-5 \hat{\mathbf{k}}
$$

The unit vector $\hat{\mathbf{C}}$ is obtained by dividing this vector by its magnitude.

$$
\hat{\mathbf{C}}=\frac{-\frac{12}{5} \hat{\mathbf{i}}-\frac{16}{5} \hat{\mathbf{j}}-5 \hat{\mathbf{k}}}{\sqrt{\left(-\frac{12}{5}\right)^{2}+\left(-\frac{16}{5}\right)^{2}+(-5)^{2}}}
$$

Therefore,

$$
\hat{\mathbf{C}}=-\frac{1}{\sqrt{41}}\left(\frac{12}{5} \hat{\mathbf{i}}+\frac{16}{5} \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\right)
$$

Part (c)

We can show that \mathbf{A} is perpendicular to the plane by showing it is parallel to the vector normal to the plane that we obtain by taking the cross product.

$$
\hat{\mathbf{B}} \times \hat{\mathbf{C}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{4}{5} & -\frac{3}{5} & 0 \\
-\frac{12}{5 \sqrt{41}} & -\frac{16}{5 \sqrt{41}} & -\frac{5}{\sqrt{41}}
\end{array}\right|=\frac{3}{\sqrt{41}} \hat{\mathbf{i}}+\frac{4}{\sqrt{41}} \hat{\mathbf{j}}-\frac{4}{\sqrt{41}} \hat{\mathbf{k}}
$$

Since

$$
\mathbf{A}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}=\sqrt{41}\left(\frac{3}{\sqrt{41}} \hat{\mathbf{i}}+\frac{4}{\sqrt{41}} \hat{\mathbf{j}}-\frac{4}{\sqrt{41}} \hat{\mathbf{k}}\right)=\sqrt{41}(\hat{\mathbf{B}} \times \hat{\mathbf{C}})
$$

\mathbf{A} is a vector in the same direction as $\hat{\mathbf{B}} \times \hat{\mathbf{C}}$. The only difference between them is that the magnitude of \mathbf{A} is $\sqrt{41}$ times larger than that of $\hat{\mathbf{B}} \times \hat{\mathbf{C}}$. Because $\hat{\mathbf{B}} \times \hat{\mathbf{C}}$ is normal to the plane by virtue of the cross product, \mathbf{A} is as well.

